Superconducting metamaterials for THz technology

V. A. Fedotov

Optoelectronics Research Centre & Centre for Photonic Metamaterials, University of Southampton, UK

Photonic Metamaterials: Technologies and Application Opportunities, Industry Open Day, Southampton, 13 September 2012

Why superconductors?

0.Low resistance from Radio to THz frequencies [Low-loss metamaterials & high-Q resonances]

1. Inherently plasmonic media [THz plasmonics & compact metamaterials]

2.Sensitive to

- temperature \leftarrow [Tuning]
- magnetic field
- electric current
- light

- [Active control]

3. Macroscopically quantum behavior [Nonlinear and quantum metamaterials]

Metamaterial fabrication

Standard planar techniques:

- Photolithography [area up to 7", resolution 1-2 μm]
- Low-energy plasma etching [sharp features, vertical sidewalls]
- Ion bean milling & e-beam lithography [area tens of $\mu m,$ resolution ~10 nm]

Metamaterial fabrication

Superconducting metamaterial samples

Micro-patterning does not affect superconducting transition

Sample handling and characterization

Cryogenic cooling is no longer technical limitation

Standard optical cryostat:

• very compact

UNIVERSITY OF

Research Centre

Southam

temperature 4 – 300K (mid-range model)

Quasi-optical measurements

Superconducting electro-optical modulator

Proof-of-concept demonstration

Metamaterial sample

- Operation frequency ~ 0.1 THz
- Diameter = 20 mm
- Number of meta-molecules = 1000+

Electro-optical modulator

- Efficient: up to 50%
- Low insertion losses: ~ -3 dB
- Very fast: up to few GHz
- Spectral range: RF \rightarrow 5 THz

Metamaterial Bolometer

Frequency (GHz)

Towards quantum nonlinear THz metamaterials

Nonlinear SQUID metamaterial

- Ouantum interference circuit
- Discrete energy levels [like hydrogen atom]
- Nonlinearity is 100,000 times stronger than p-n junction of an electronic diode

1st realization of SQUID metamaterial (Southampton): Nb/Al₂O₃/Nb superconducting ring array

Flux quantization in closed superconducting loop

Light in a fibre loop

Superconducting "fluid" in a wire loop

Quantized momentum

Quantized magnetic flux (because "fluid" is charged)

Quantum flux exclusion metamaterial

- Split-ring resonator produces magnetic field
- Superconducting currents in loops will screen induced magnetic field in steps (quanta)
- Superconducting loops + split-ring resonator \rightarrow non-linear meta-molecule

What to take home...

Superconducting metamaterials/waveguides:

- viable platform for steering, controlling and switching THz radiation
- extreme confinement of THz fields > 1:1000 ($\mu m \rightarrow nm$)
- cryogenic cooling is no longer a technical limitation

More details during posters session and lab tours today...

Project team:

Anagnostis Tsiatmas Roger Buckingham Peter de Groot Nikolay Zheludev Funding:

Engineering and Physical Sciences Research Council

